major character and admit a generalization of relations both of the first and of the second types. In particular,
we can take into account creep, nonorthogonality of the slip lines, dilatational effects [10], and effects of in-
ternal friction which have importance for soils and rocks.
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FORMING OF FIBROUS LIGHTGUIDES WITH A SMALL
AZIMUTHAL ASYMMETRY OF THE BILLET

M. E. Zhabotinskii and A, V. Foigel’ UDC 532.5:‘535.8:666.189.2

One possible type of fibrous lightguide is a transparent microcapillary., Small losses with the propaga-
tion of light along a lightguide are possible if its transverse cross section is sufficiently close to a concentric
round ring and is constant over the length of a fiber. From a physical point of view, the process of the form-

ing of a lightguide can be represented as the flow of an incompressible Newtonian liquid with avariable viscosity
~ (some polymers are not Newtonian liquids and are therefore not discussed here).

Article [1] discusses the pulling of a microcapillary from a billet, i.e., a solid hollow cylinder of given
dimensions. The billet and all the external conditions under which the pulling was done were assumed to be
axisymmetric, as a result of which the microcapillary pulled was also axisymmetric with a round cross sec-
tion. In [1] equations for the form of the jet (the transition from the billet to the microcapillary) were ob-
tained and the dependence of the dimensions of the microcapillary on the parameters of the process was found.
We discuss below the pulling of a microcapillary from a billet, taking account of the small real nonaxisymmet-
ric character of the latter; the degree of nonaxisymmetry of the microcapillary is found and its dependence
on the parameters of the process is investigated.

§1. Inall aspects, except for the assumption of the nonaxisymmetry of the process, the statement of the
problem is the same as in [1]: the temperature distribution is assumed to be given; in all cross sections, the
thickness of the wall of the billet and the jet is assumed to be small in comparison with its radius; by virtue
of the thinness of the wall, the temperature is assumed to be identical at all points of the transverse cross sec-
tion of the jet and to depend only on the longitudinal coordinate z; the viscosity is a known function of the tem-
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perature and its distribution is described by a given function 7 (z) (Fig. 1, where on the right there are given
typical profiles of the temperature of the furnace and the viscosity of the material); 7 (z) = » as z—+ »; the
rate of feeding of the billet u, and the rate of pulling of the microcapillary u,, are assumed to be given quanti~
ties. Account is taken of the surface tension ¢ and the pressure drop of the air Ap =p, — p, between the chan-
nel and the external medium; the values of o, p; and p, are assumed to be identical for all the sections of the

jet.

The form of the tranverse cross section of the billet (Fig. 2, where, for clarity, the nonaxisymmetric
cross section and the thickness of the wall are greatly enlarged) is regarded as given and is described by two
functions of the azimuthal angle ¢: hy(@), the thickness of the wall, and Ty(¢), the mean radius, In the expan-
sion of the functions hy{w) and Ty{¢) in Fourier series

Ry () = hE” [1 + 1;2::1 %10 COS mp]; o (g) = 18" [1 -+ 7;——:1 Ppo COS n(p] (1.1)

the values of ho(o) and Y'((,O) are mean values; uy o and pp o are the relative amplitudes of the harmonic of the
thickness of the wall and the mean radius,* By a choice of the origin of the system of coordinates, we can
always obtain

p1, 0 = 0. . (1.2)
The nonaxisymmetry of the transverse cross section of the billet is assumed to be small:
en, ol € 15 ool <L n=1,2,3, ... (1.3)
The sought quantity is the form of the transverse cross section of the microcapiliary, described by the func-
tions h_ (¢) and r (¢},
Roo () = B [1 + ,giun,., cos nq)]: To (@) =19 [1 + g‘ Pr cos"mp}- (L.4)

By virtue of the axisymmetry of all the external conditions, in the first approximation with respect to
small values of (1.3), the mean values of h'¥) and T do not depend on the values of #n ¢ and Pn,0 and can be
found from a solution of the axisymmetric problem [1], while the relative amplitudes of the n~-th harmonic in
{1.4) depend on the relative amplitudes only of this n-th harmonic in (1.1):

Rny 0 = An¥n,0 + BuPn,os (1.5a)
Po,0 = Cnitn,0 + Dupao- (L.5b)

The aim of the work was to determine the coefficients of the transition Ay, By, C
igate their dependence on the parameters of the process.

n» and Dy and to invest-

§2. We seekthe solution of the problem posed in the form of a small [by virtue of (1.3)] nonaxisymmetric
perturbation of the axisymmetric flow of the liquid, found in [1]. We represent the pressure p, the components

*In formula (1.1) the expansion in terms of sin n¢ is omitted. An analysis of the total solution taking account
of sin n¢ shows that taking them into consideration yields nothing new.
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Fig. 2

of the velocity of the flow of liquid vy, vy, v;, the radii of the internal and external boundaries of the jet
1y (z, ¥), 1y(2, ¥), and the associated thickness of the wall h(z, ¢) and mean radius of the jet T(z, v)

bz, @) =1y @) — iz, @ T(z, 9) = (12)iry(z, @) + oz, @) 2.1)

in the form of the sum of quantities of the zero (with respect to powers of Yo and Pn.o) and first approxima-
tions ’ ’

) 1 ' 1 . biJ 1),
p=p" 4+ v, =0+ o ve=0+0 v, = ol ol

- - - (2.2)
r=r 4+ A4 =P+ R= RO L g =@ 4

Quantities with the superscript 1, depending on ©, are small in comparison with the corresponding quan-
tities with the superscript 0, which do not depend on the angle ¢ and which describe axisymmetric flow,

The equations of axisymmetric flow, obtained in (1] by simplification of the Navier —Stokes equations,
the equation of continuity, and the boundary conditions at the lateral surfaces, on the basis of the assumption
of the relative thinness of the wall of the billet and the smallness of the angle of inclination of the jet 8 in the
plane r—z, have the form

Y /;80) <1 (2.33)
o~ [l L, {2.3b)

where ! is the unit characteristic dimension along the z axis, having the sense of the length of the heating
zone:

ln, = 5 dzin(z) (2.4)

(n, is the minimal viscosity). After the introduction of the dimensionless parameters and dimensionless vari-
ables h

-(O)l

Uy, Apr . ol |
U,.,=u—o; w=InU; sz' =m. : . (2.5)
s@=wngl § dtm@)  (s(=)=0; s(+) =w); (2.6)
Hs(2)] = k0@ [ RIs(2)] =7V [r; Uls(2) = v¥2)u, 2.7

the equations and boundary conditions for the dimensionless longitudinal velocity and the mean radius and wall
thickness of the jet have the form [1]

dU/ds = yU — QRU/3; \
{ dR/ds — PRY3 — QR%2 — yR'2; (2.8)

Ulg = 13 Bleeg = 1i Ulpmw = Ua; 2.9

H(s) = RY(s)U=Ys), (2.10)
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where constant vy is determined from the boundary conditions (2.9). Integration of (2.8) gave an expression
for the dimensions of the microcapillary he) and T :

WY = mPUZE (P, Q,w); 78 =rPUZV KT (P, Q. w). (2.11)

In [1] a detailed curve was given for the function K, and, from an analysis of this curve, it was shown
that the following are of interest:

Q<3 K>1. 2.12)

§3. Inthe r-thand @-th components of the Navier —Stokes equation, in which, in view of the smallness of
the Reynolds number nonhnear terms are omitted, on the basis of (2.3b) we neglect the term 5%v,1/51? in
comparison with 8%y, @) /92% and the termazwp(i)/ar2 in comparison with 82v1/8¥?, In the equation of conti-
nuity, taking into consxderatmn that v, (1 ~y W) , we neglect the term dv, )/ 5, in comparison with 3 vrl)/
dr, After these simplifications, the pressure p and the transverse components of the velocity v, () ana
v¢(1) satisfy the two~dimensional Navier ~Stokes equations and the two-dimensional equation of contmuxty, into
which the variable z enters only parametrically:

VP =0 (@) Vv vevi) =0, @3.1)

s 1 i) is the operator of differentiation over the transverse coordinates; vt(i) = (vr(l),. Vq)(i)).

where Vt= (6r .

Equations (3.1) reduce to a biharmonic equation for the stream function, solving which we have

v = 3 9, (r) cos np=(a;r* + b, + ¢ Inr + dyr—2) cos ng +
n={

+ D (@™ b e L d T cos ng {3.2)
n=2
and analogous expressions for vw(’) and p(” containing the arbitrary constants ay, b Chs and d,,. A partial

solution is found from the requirement of the satisfaction of the boundary conditions at the 1ateral surfaces of
the jet, which, after linearization taking account of the smallness of all the quantities dependmg on the angle ¢,
have the form

oD i 2.(1) 2, (0)
— 1)t dtr: v, .
[ PO+ 2“*—} r=r<.0>=((,m>) J [ré" + 3 ] Mg o™i =12 (3.3)
i 3 ‘
- (1) ;1) (1) #0
8 (Y 1 ov, 4 dr (—io )
il [r ar ( r ) + r [jq) ] ‘r==rfi0) = r(10 [p + ) P(O) + 2']"—‘} L‘=r$m, = 1’ 2 (3.4)

{i=1 corresponds to the internal surface and i=2, to the external surface). We seek the perturbation of the
thickness of the wall h(’)(z, ¢) and the mean radius of the jet 1) (z, ») in the form

WG ) = B anls@loosng 7 (s, 0) =7 3 Buls (3] cos ng. (3.5)

For the values of ri(l)(z, @), from formulas (2.1) and (2.2} it follows
(5, ) = 7 3 {(~ 1@ s (- 2124+ Ba s @)} cos g, 11,2, (3.6)

where
&= O[T

Substituting formulas (3.2) and (3.6) and the values of the zero approximation p(o) vr(°) from [1] into (3.3)
(3.4), for each value of n we obtain a system of four linear algebriac equations with respect to a., bps € 0’ dpn,
containing @, and B, in the right~hand side. Determining the constants Ay, by, ¢y, dy from this system and
substituting them mto (3.2), we find expressions for the Fourier coefficients 9, of the perturbation of the
radial velocity v,.'"/ in terms of the Fourier coefficients oy, and By, of the perturbation of the thickness of the

wall h{!) and the mean radius r( ), which we shall not wr1te out,

*
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To obtain a closed system of equations with respect to the values of o and By, 2 connection must be es-
tablished between the change in the perturbations of the internal and external boundaries along z and the per-
turbation of the radial velocity. To this end, the equation

dr,/dt = U,I,=.,.‘ y b= 17 21

connecting the total change with time of the radius of the boundary with the radial velocity, is expanded in
terms of the perturbation

a® [t = v®

r—r(; ar Jdt = [v? + rPau® /ar]l,.,.,.gm. i=1,2. 3.7

Substituting v,.) and (3.6) into (3.7) and taking into consideration that
dt = dzjv{®,

we obtain a system of differential equations for the values of @) and B, . We write them separately for n=1
and for n=2, since the Fourier coefficients in (3.2) for n=1 and n=2 are written differently. Using (2.5)-
(2.7), we have

day _ 1 o dU
s 2 U ds’
B__ 1P @8
ds 2 U ds’
az a { a dU
T=Q[— 7"+H5n]—‘z"?"-’3'">-2; (3.9)
B, R[ 3 1 6P R* 1 B,aU
= — SRt 2b | - H  Ep - (3.10

where R(s), H(s), U(s) are dimensionless quantities of the zero approximation. The coefficients with &, 8,
in the right-hand sides of (3.9), proportional to P and Q, are expanded in powers of a small [in accordance
with (2.3a)] parameter £, and only the leading terms are retained. In the right-hand side of (3.10), the first
term is retained along with the second, containing 1/€?, since, specifically, it is possible that P=0, Q > 0.

A comparison of (3.5) and (1.1) gives the initial conditions for ay, 8
@nli=g = %n0i Bnlimo = Pn0r.2=1,2,3.... (3.11)

54, I;et aty, B and off, SR be solutions for the initial conditions
alico=1; Pal=o=0; (4.1)
CGalmo=0; Balmo=1. 4.2)
Then from (1.4), (1.5), (2.11), (3.6), (3.11), for the sought coefficients of the transition A,, By, Cy, D, we have

A, = UZZK_’G; ls=wf B, = U?K—ia;le;

. e (4.3
Con=ULKBplsmwr Do = ULKBA oy )
For n=1, from (3.8), (4.1)-(4.3) we find

Al = K—I(Pv Qr w); Bl. = Cl = O.L__D.l = KLPL_Q)_!.D)I_ (4,4)

from which, by virtue of (1.2), (1.5), py,« =0, which was to be expected. For n=2, we first examine the case
P=0. The fundamental solutions of the system (3.9), (3.10), taking account of (2.8)-(2,10), are

an = HIRMU™ By = (b + 1/2) (HIRYT U™,

‘where

Ay = (=14 £V (n® =25)/(n* — 1)}, j = 1,2
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ffor j = 5, there is degeneration: A; = A, and the second solution contains the factor In(H/R)]. Combining the
fundamental solutions in such a way as to satisfy the initial conditions (4.1) or (4.2), from (4.3), taking account
of (2.7), (2.11) for n =4 (we limit ourselves here to this case), we obtain

A, = K% sin (vn — -;— tgv,-In K) /sin Vai
B, = 4K**sin (—;— tgv,-In K) ctg vy

I Cp=— -%Bn/cos2 vy, Dj= K% 4in (vn -+ —i— tgv,-In K) /sin Vns

where
K = K, 0, w); v, = aresin [y(@5 = rn®)i24l.
For P> 0, Egs. (3.9) and (3.10) cannot be solved in quadratures. The sought values of A, B, Cn’ D,
are found from (4.3), after numerical integration of (3.9), (3.10) for the initial conditions {4.1) or (4.2) for
different values of the parameters P, Q, w.

85, Eachof the coefficients is a function of the three variables P, Q, w; here, as in [1], the explicit de~
pendence on w in the range of interest to us w=1n (10%). . .In (10°) can be neglected.

Figure 3 shows) the dependence of the coefficients A, (n =1, 2, 3, 4) on K with different values of the
ratio P/Q =Ap/ (20/1’30 ), which describes the relationship between the pressure drop of the air and the pressure
of the forces of surface tension, (The solid line represents P/Q =0; the dashed line represents P/Q =0.2; the
short dashed-dot line represents- P/Q =0.75; the long dashed-dot line represents P/Q =1, The numbers on the
curves are the numbers of the harmonic n. The unnumbered curves with P/Q=0.2 correspond simultaneously
to n=2, 3, 4.) The reason for using K(P, Q, w) as an argument, and not Q, is the following: With the condition
(2.12), there is always a deviation from similarity [1]; the parameters of the process must be selected in such
a way that the coefficient of this deviation will not be too great:

(B (BN =K (P, Q, w) < Ky =[(hQFD) (i )aia ] , (5.1)
since the ratio h@/ #0) i5 fixed, and the ratio ho /(") for the billet cannot be an arbitrarily small quantity;
for the typical values of all the parameters K.~ 2. The limitation on Q flowing out of (5.1) depends on P; there-
fore, it is not suitable to use Q as an argument.

Figures 4 and 5 give curves for the coefficients By, C,, D, (n=2, 3, 4); the long dashes represent PQ=

0.1. There are no curves for n=1, since B; =C; =0, and Dy is of no interest, by virtue of (1.2). The curves in
Figs. 3-5 were plotted for € =0.1; curves for £ =0.05 and 0.2 do not differ significantly from those given,

§6. Amplitude inhomogeneities (nonaxisymmetry of the transverse cross section) of the billet, described
by the fact that, for some numbers n, ¥n o #0 or Pn,o #0, according to (1.5) generate azimuthal inhomogeneities
of LS and pn’w‘:for the microcapillary pulled., The effect of nonaxisymmetry of the billet on the microcapil-
lary is described by the coefficients of the transition A, By, Cy, Dy; the smaller the values of the coefficients,
the more strongly are the amplitude inhomogeneities smoothed out during the pulling process, We note that,

in a real billet | a0 | ~ |7 pn,0| for n=2; therefore,

Pn, of ~&l%p ol 6.1)
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this circumstance must be taken into account with a pairwise comparison of Ap and By, C,, and Dy,

An electrodynamic calculation {2], confirmed by experiment, shows that the losses with the propagation
of light along a lightguide of the type under discussion depend mainly on amplitude inhomogeneities of the thick-
ness of the walls; therefore, we limit ourselves here to investigation of the dependence of the coefficients Ay
and By, on the parameters of the process.

An analysis of the curves for A » By shows that, taking account of (6.1) for n=2 and P/Q=0 in formula
(1.5a), both terms are of the same order of magnitude, Therefore, in the absence of a pressure drop (Ap=0),
azimuthal inhomogeneities of the thickness of the wall and the rad1us of the billet have an approximately equal
effect on the aximuthal inhomogeneities of the thickness of the wall of the microcapillary.

For n = 2 and P/Q=0,2, the value of B,, is small in comparison with unity and, taking account of (6.1), in
formula (1.5a), the second term can be dropped:

Ap,0 R An“n o;

by virtue of (4.4) this formula is valid also for n=1 for an arbltrary value of P/Q. From the curve for A
can be seen that, for P/Q=0.2, the value of A, for n =2 does not depend on n. The values of A,, Ag, A, for K <
1.7 are less, the greater the value of P/Q; by virtue of (4.4), the value of A; does not depend on P/Q.

Thus, it follows from Figs. 3-5 that, with pulling, there is a decrease in the relative amplitudes of the
harmonics of the thickness of the wall and the mean radius. For the first harmonic (the internal and external
surfaces of the billet are noncoaxial round cylinders), the decrease is almost wholly determined by the value
of the coefficient of the deviation from similarity; therefore, taking account of limitation (5.1), not more than a
two-fold decrease in the relative amplitude of the first harmonic of the thickness of the wall is really permis-
sible, Forthe second (the surfaces of the billet are elliptical cylinders) and succeeding harmonics with the
same values of K, a decrease in the relative amplitudes by 5-10 times is permissible. Conditions withP/Q~
1 are preferable, where in the first place, the azimuthal inhomogeneities of the mean radius of the billet have
no effect on the thickness of the wall of the microcapillary and, in the second place, azimuthal inhomogeneities
of the thickness of the wall of the billet are more strongly smoothed-out with pulling than with P/Q =0 and the
same value of the coefficient of deviation from similarity K.

An analysis of the assumptions made in obtaining Eqs. {3.1) shows that, with values of the parameters P
and Q not exceeding a few units, all the significant (not too small in comparison with unit) coefficients A, By,
Cp» Dy correspond to the original statement of the problem.

In the solution of the problem it was assumed that the parameters of the billet are constant along its
length. The results, however, can easily be developed for the case where the azimuthal inhomogeneities vary
along the length of the billet, if the characteristic length L of such changes is sufficiently great, L. » Uw.

The curves obtained for the coefficients of the transition were used to evaluate the allowance for the
azimuthal inhomogeneities of a billet from which, after pulling, a microcapillary is obtained with a given allow-
ance for the value of the deviation of its transverse cross section from a concentric round ring.

The authors express their thanks to B. Z. Katsenelenbaum for his fruitful evaluation, A. I. Leonov for a
number of observations, I. V. Aleksandrov, T. V. Bukhtiarova, A, A. Dyachenko, and 8. Ya. Fel'd for evaluating
the work in the various stages of its completion.
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